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ABSTRACT

A general repairable system model is proposed with a

maintenance schedule such that the failure rate is reduced

after each preventive maintenance. The model introduces

naturally the concept of system availabilities as random

variables. Probability distributions of the stochastic

availabilites are derived. The stochastic availability is

optimized with respect to the duration of the operating

interval between maintenance operations, and with respect

to an age replacement policy. Analysis and optimization are

achieved by a PASCAL computer program which is developed for

computations and illustrations of various failure rate charac-

teristics and parameter variations. The concept is further

extended to stochastic cost function or generalized stochastic

availability.
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CHAPTER 1

ZNTRODUC TZO N

1.1 CONCEPTS OF SYSTEM AVAILABILITY

Reliability is a relatively new:field of engineering (Shooman (1968);

Dhillon and Singh (1981)) and applied probability (Barlow and Proschan (1965)).

It has found its importance in the planning, design, and operation of systems

in recent years. Formally, system reliability is defined as the probability

that a system operates without failure during the time interval CO.t3 ,

that is,
-fT 1 -F(t) (1.1.1)

where T is the (random) ;lifetime of failure-free operation of an initially

good system until failure, F(.); is the distribution function (d.f.) of T

and Pf.1 denotes the probability measure. The reliability is mainly

defined for unrepairable systems. Other definitions can be found in various

references (Barlow and Proschan (1965); Kozlov and Ushsakov (1970)).

Note that the field of reliability engineering concerns the probability of

non-negative random variables only.

For repairable and maintained systems, a measure of system performance

and a main design crierion is the concept of system availability. Various

definitions of availability have been defined in the past three decades

(Osaki and Nakagawa (1976); Lie, Hwang and Tillman (1977)). We shall

review some of them.

Hasford (1960), Barlow and Hunter (1960), and also Barlow and Proschan
(1965) defined the following three types of availability :

r1

.... . .. . . .. .. . ... . ... ±.
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(1) Instantaneous Availability / Pointwise Availability

The instantaneous (or pointwise) availability is the probability that

the system is operative at any time t . It gives a good mesure for

systems functioning at any random time.

(2) Average Uptime Availability / Interval Availability

The average uptime (or interval) availability is the expected ratio of

uptime in a given time interval. It is a satisfactory measure for

system working over a duty cycle.

(3) Steady-State Availability / Limiting-Interval Availability

The steady-state (or limitina-interval) availability is the average

uptime availability when the time interval is very large. It is

relatively simple to calculate and it is a quite satisfactory measure

for continously operating systems. (See also Eq.(1.1.3)).

Kabak (1969) proposed the following two versions of availability for

systems with up and down cycles for an exponential failure time and constant

repair. time

(a) Availability for Multipe Cycles

The availability of n cycles ( n - 1,2,3,... ) is the epected value

of the proportion of total uptime in the n cycles to the total elapsed

time in the n cycles.

(b) -Finite Time Availability

The finite-time availability A(T) for a time interval (0,Tj is

determined by combining the probability of n failures in a given time

- interval with the proportion of available time for the interval.

(See Kabak (1969) for detail).
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It has been shown by Kabak (1969) that for exponential failure time and

constant repair time,

(a) as the number of cycles increases, the. limit of the availability for

multiple cycles is the steady-state availability, and

(b) as the time interval increases the finite time availability also

approaches the steady-state availability.

Consider a repairable system with up and down cycles all of which are

independent. Let

T a uptime random variable in an up-cycleup

Tdown 2 downtime random variable in a down-cycle

Note that all the T P s are independent and identically distributed (i. i. d.)up
random variables and all the Tdown 's are also i.i.d. It can be shown by

renewal theory for an alternating renewal process (Parzen (1962)) that

lim Pf System is up at t E . (1.1.2)
t-W" E[Tup] + E(Tdown]

MTBF + I4TTR

where Er.) = expectation

MTBF = mean :time between failure

ITT = mean :time to repair.

The fraction in Eq.(l.1.2) is simpy the steady-state availability which

will be denoted by

A"

Thus,

0 a E( uptime (1.1.3)
EC uptime ) + EC downtime



4

In particular, for exponentially distributed uptime and downtime, namely,

with probability density functions (p.d.f.)

fTUP(t) - aexp(- t) , t>0 (1.1.4)

and

f
Tdown(t) - Aexp(-ut) , to (1.1.5)

then

A+1 - (1.1.6)

Eq.(1.1.3) is widely accepted as the (simplest and non-randoi)

definition of system availability. However Eq.(l.1.3) gives only the

average value and there is no probabilistic guarantee that Ac will ever

be achieved. A partial remedy had been proposed by Martz (1971) who

defined the following random variable

a * untime (1.1.7)
uptime + downtime

TUP
T +T (1.1.7')

Tup + Tdown

Since T and T are random variables, A is indeed a random variable.
UP down

M artz studied the following definition of availability :

Single Cycle Availability

The single cycle availability Ar is the value such that

PAAr r..8)

for all rE(O,1] , or

ArfA(a) da - r (1.1.8')

where fA (.) is the p.d.f. of A

L A



By specifying r , Martz's definition gives a probabilistic guarantee

on the frequency of occurrence of the availability value A . Mart alsor
derived some expressions of A by evaluating fA(.) for independent

uptime and downtime. In particular, if T and Tdown are exponential

as given in Eq.(1.1.4) and (1.1.5), then

A = (lr) (1.1.9)
r (1-r) + rA

When % ,

-mA1 (1.1.10)

Nakagawa and Goel (1973) extended Martz's definition to a finite time

interval

Availability for a Finite Interval

Let
T T

A(t) = - UP (1.1.11)T +Tt
Tup Tdown

The availability for a finite interval A (t) is such that for t 0 and
rC (0 C,11

P fA(t),A r(t)) - r (1.1.12)

Some complicated expressions for A (t) had been derived by them forr
independent uptime and downtime.

L.
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D4Mashall and Goldstein (1980) studied a repairable system and

introduced the concept of cycle availability as a random variable

Cyclo Availability

The cycle availability A is a random variable defined as
C

Total uptime for a complete cycle
c Total uptime for) (Total downtime for

a complete cycle" + " a complete cycle

where a complete cycle of the system begins with a new operative system

and ends until failure, followed by a renewal or complete repair.

Goldstein considered system designs and studied the following

probabilistic inequality

P [A 11 >, 15(..4

where O<< 1 and 0< 51 . He derived some expressions for repairable

systems with independent exponential lifetime and exponential repair-time,

so that the technique of Laplace transform was applicable to give an Erlang

distribution (Parzen (1962)). However no numerical illustrations were

given. The generalization of independent exponential distribution to more

general distributions, such as Weibull distribution (see Appendix 1), is

not 'straight forward, because the Laplace transform technique does not give

a closed form solution.

In this research, various concepts of system availability are studied

as random variables, and they will be called stochastic availabilities, in

order to emphasize their random nature. In particular, Goldstein's model

and approach are extended to a general repairable system with maintenance

schedule such that the failure rate is both age and maintenance dependent.



1 2.2 DMAINTENANCE AND FAILURE RATE

As we have seen so far, the various definitions and expressions of system

availability have no explicit dependence on the maintenance or repairs.

Most authors have treated failure and repair as independent random variables,

neither of which depends on the maintenance. In other words, the system

failure rate is not affected by any preventive maintenance. The use of

failure rate seems to be a natural way of system failure analysis because a

complete knowledge is obtained once we know or specify the failure rate

(see Theorem 2.2.1).

The purpose of preventive maintenance for repairable system is most

likely to improve' the system if possible. However the failure rate may be

disturbed by the number of maintenancs .;erations. Various replacement

and maintenance policies had been proposed (Barlow and Proschan (1965);

Jozgenson, McCall and Radner (1967); and Pierskalla and Voelker (1976)).

Basically, an optimum replacement policy is to choose a set of time intervals

between two maintenance periods at which replacements are to take place

such as to minimize an expected cost during a given finite or infinite .time.

Note that the cost is a deterministic quantity. Recently, Nguyen and Murthy

(1981) have extended Barlow and Hunter's (1960) two replacement policies to

a case where the failure rate is an increasing function with the number of

repairs. A further generalization of the optimization problem to failure

rate dependence on the number of previous repairs and on the times when they

took place was proposed by Shaw, Ebrahimian and Chan (1981).

As with availability, the cost to be minimized can be generalized to

a random variable approach by modifying the definitions of stochastic

availability to be associated with costs, so that minimizing the probabilitj

of the so called stochastic cost is equivalent to maximizing that o.1 the

stochastic availability (see Chapter 5).

I,|
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In this research various concepts of stochastic availability for a

general repairable system model with a maintenance schedule and an age and

maintenance dependent failure rate are studied and are applied to system

design. In Chapter 2, the generl system model is proposed. The system

failure rate is reduced and altered after each preventive maintenance.

Two types of failure reduction are considered. The lifetime distributions

forboth failure reduction types are derived. In Chapter 3, various

stochastic availabilities are defined. The probability distributions of

the stochastic availabilities are derived. In Chapter 4, optimum system

designs are considered using the concept of maximizing the probability of

stochastic availability and probabilistic inequality. In particular,

optimum operative-cycle time and age replacement time are determined for a

periodic operative-maintenance policy. Numerical examples illustrate the

failure rate characteristics and variations of system parameters and age

replacement time. A PASCAL computer program is developed for the computation

of the probability distributions of stochastic availabilities. In Chapter 5,

the concept is further extended to the so called generalized stochastic

availability and the equivalent stochastic cost function in probabilistic

optimization. In Chapter 6, the work is concluded with a discussion on

possible extensions. Appendix 1 gives a summary of Weibull distribution.

Appendix 2 is a -listing of the PASCAL computer program.

) .1

..", . . . . . . . .. . .. 1 .. . l - I 1. .



CHAPTER 2

SYSTEM MODEL

2.1 A REPAIRABLE SYSTEM WITH MAINTENANCE SCHEDULE

We shall study a repairable syttem with a maintenance schedule as
shown in Fig. 2.1.1.

Maintenance
State

1 .1

0Operation F

Renewal/Replacement
Oprative Failure

State State

-Fig. 2.1.1 State transition diagram of a repairable system
with a maintenance schedule.

9
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The system starts its :mission when it is new and it follows an operative

and maintenance schedule before it fails. Thus the system is represented by

an UP operative state @ of normal operation, a DOWN maintenance state (

of preventive maintenance. By preventive maintenance we mean that the system

is not replaced by a new one completely, but -simply a replacement of parts,

minors repairs or even Just inspections. A DOWN failure state ( accounts

for the system failure or breakdown. A new system is set to operate for a

time period called the operative-cycle time (u) and the system is said to be

in the operative-cycle (or :simply, the 0-cycle). Then it is brought to

preventive maintenance for a duration called the maintenance-cXcle time (d)

and the system is in the maintenance-cycle (the 14-cycle). After the

maintenance operation the system is back to normal operation. The transition

@®

is called an operative-maintenance cycle (an 0-14 cycle). The system may

fail during the O-cycle or during the M-cycle. When the system breaks down,

it is in the failure state ® , and it -will only resume its normal operation

as a new system after a complete repair, renewal or replacement of the entire

system. The -time spent for such a renewal is assumed to be a random variable

called the repair time TF . If the transition

is completed, the system- is said to have gone through a complete cycle and

the entire system is considered to be a new system again.

A schedule of the 0-i cycles, operative-cycle time and Maintenance-cycle

time is shown in Fig. 2.1.2.



I I 1

---Ul-.cld.-- U2.-.d 2  u-- un--- n

~Time: tm t ? 2
toO It 1 r t21- en tn

State: .0 00
Cycle : 2n

Fig. 2.1.2 System operative-maintenance schedule before failure.

We have used the following notations in-Fig. 2.1.2

t 0

0-M Cycles : t0 ) , (ti t2 ) , ... , 1 n% t)

Operative-cycle, :time u1-, 1-t , .. V , .-t
o- .- - -to,.. , n n-l

1 ,intenance-cycle time ..d-d , ... , d=t- ,
,n nn
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In particular, we shall mainly interest in the periodic

operativ-maintenanco schedule (see also 4.1), namely,

; U1  U2 - .. = U -- ... S U
U1 n 2 a nw

dI = d a *.. 2 d - ... 5 d
. (2.1.1)

t -n .t

t -u. +d
1

NOTE All :time variables (deterministic or random) are assumed

non-negative. Therefore, all probability density functions

and failure rate functioas are defined to be zero for any

negative time. We shall not specify this assumption explicitly

in all expressions.

o

i 7 ]I I I IIIIII I i.



2.2 FAILURE RATE WITh AGE AND MAINTENANCE DEPENDENCE

The lifetime of the repairable system before failure is a random variable

T with adistribution function (d.f.) F(.) known as the failure distribution

function (Barlow and Proschan (1965)). Usually, F(.). is assumed to be

absolutely continuous so that there exists a probability density function

(p.d.f.) given by

f(t) dF(t) (2.2.1)dt

or,
F(t) r f(x) dx 

(2.2.2)

Note that
f(t) - 0 for t<0

and

F(t) 0 0 for t<0

The system failure rate function (f.r.) or the system hazard rate function

r(.) is defined by

r(t) a f(t) (2.2.3)
1 - F(t)

dR(t)
dt

= ,(2.2.4)
R(t)

where-

R(t) 'A 1- F(t) 9 F(t) (2.2.5)

is called the system reliability function (r.f.).

From Eq.(2.2.4), we have

dt + r(t)R(t) - 0dt
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Solvina,

R(t) - 1 -F(t) -expl-(r(x) d

R(O) - 1 (2.2.0)

F(O) - 0

Eq.(2.2.6) and (2.2.3) give

f(t) - r(t)R(t) (2.2.7)

f(t) - r(t).exp t (x)dx (2.2.7')

Eq.(2.2.7,) is of fundamental importance.

In order to be a valid failure rate function, r(t) must satisfy the

following conditions :

r(t) - 0 , t <0

r(t) > 0 , t>0 (2.2.8)

) r(x)dx 
-co

i 0

From Eq.(2.2.2), (2.2.6) and (2.2.7'), we see that F(.), f(.), and r(.)

are equally suitable for describing the failure distribution. In particular,

if we specify he failure rate, then the following 1heorem is obvious

0. THEORM.. 2.2.1

A failure rate function r(.) satisfying (2.2.8)

uniquely det nes the failure distribution of the

system.

L.-W-
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-Since there are infinitely many failure laws, we shall choose a widely

useful one, namely, the Weibull type failure rate (Appendix 1), that is,

the system lifetime T has a Weibull distribution

0
P.d.f. f(t) - 9tW -  exp(-') (2.2.9)

D.f. (t) - 1 - exp(-ft4 ) (2.2.10)

F.r. 9(t) = t" - 1  (2.2.11)

R.f. 9(t) - exp(-Ake ) (2.2.12)

In particular,

(1) o - 1 (exponential case), constant failure rate;

(2) i - 2 (Rayleigh case), ;linear failure rate.

Therefore, the failure rate is age dependent whenever Ot 1 .

We shall study the Rayleigh case ( 09 - 2), or the linear failure rate,

because all other cases can be analyzed in the same way.

In order to allow the failure rate r(t) to be dependent on the

maintenance operations, the failure rate is assumed to change after each

maintenance-cycle. Thus the failure rate is piecewisely defined on each

0-M4 cycle in the following manner

Sr 1 W t 6 to, t l )

r2 (t) , t E [tlt 2 )

r(t) a (2.2.13)rn(t) t E t~ n

n1 n-1

where
rl(t), r2(t), r. , (t),..

is a sequence of Weibull type failure rates subjected to (2.2.8) , namely,

bA
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r1 (t))O , r 2 (t)>o , ... , r (t) 0I t n (..4
rI(xldx + r2 (x)dx + ... + rn(x)dx + ... - o

The following form of the failure rate is proposed :

For n m 1,2,3,

rr(t) (t;, -at) t) , t E E 1,t ) (2.2.15)

where

0(t;, ,=) (2.2.16)

0 ~ ~ ~ ~ .. < ( 4A <(..7

A(t) = , t n-tn_.tn ) (2.2.18)

o A1  Z~2 . .. .... (2.2.19)

4 n & An- + gn.rnl(tni-) (2.2.20)

91 0 , gn (0,11 , n - 2,3,... (2.2.21)
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The failure rate r(t) so defined has discontinuities of "jump,' type at

a countable set of points

to , tI . tn ,

and &(t) also has discontinuities at the same points representing a

reduction failure rate. Obviously, if there is no failure reduction, then

W(t) - 0 - r(t) = r(t;A,M)

Thus the benefit of the maintenance schedule improves an aging system in the

sense that the system failure rate is reduced after each O-M cycle with a

tradeoff of shortening the mean lifetime because the A 's which is a measure

of mean lifetime (Appendix 1, Eq. (Al.4)), increase with the number of

0-M cycles. For convenience, we define the following

°(t;Ac) = regular failure rate (S ?(t) if A and a are constants)

r(t) = age and maintenance dependent failure rate

( t) = failure reduction function

gn = failure reduction factor

an f= reduction jump-down

0
As an illustration we depict the shapes of r(t), A(t), and r(t) in

Fig. 2.2.1 for a Weibull type linear failure rate (GC= 2).

When N(t) is a step-like function, the r(t) has a constant slope

in. each interval. When A(t) is a piecewise linear function, the r(t)

has a varying slope in each interval. This corresponds to a maintenance-

dependent failure rate parameter sequence f An }"



r(t)

slp 2A3

Z-lp

t I t 2 t 3t4

Fig. 2.2.1(a) Regular linear failure rate.

0( t

0o t 2  t 3  t 4

Fig. 2.2.1(b) Failure reduction function.

r( t)

slopem2A Voo

'00,slope 
2A

o I3  t2  t3  t4

Fig. 2.2.1(c) Linear failure rate-.with failure reduction.



2.3 F.AILURE REDUCTION CRITERIA

For a real, usually large, system# it is more efficient to perform

preventive maintenance on a periodic schedule in order to reduce management

cost etc. It is therofore reasonable to assume that the operative-cycle

times and maintenance-cycle, times are fixed (Eq. (2.1.1)),

U1 = u 2 - ***n **UU

d, = d2 = ... d o d (2.3.1)

t n  nt I , n - 1,2,3,...

Furthermore, we may assume that

A,= = A2 " = *0 =  ""= '  (2.3.2)

and
81 M g2 = ... = n g g E rol, (2.3.3)

Two special types of failure reduction are defined in the following

TYPE 1. FIXED.FAILURE REDUCTION

After each M-cycle the failure rate is reduced in a way that all

jump-downs are the same in each O-bt cycle, or more precisely,

& 2  - g.rl(tl) =a

A 3  + =2& (2.3.4)

An An-l+ A - 1.

where
C lCo,lJ

L 4
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Thus,

g=2 = 2A'tlg (2.3.5)

The failure rate is .given by

2Xt , t -to,t 1 )

2,9 t - 0, t6(tlt 2)

r(t) - 2t - 2 , t E (t 2 ,t 3 ) (2.3.6)

n-, 2 At - (n-l)A t (t [n- t n)

The shape of r(t) is sketched in Fig. 2.3.1. The r(t) given by

Eq.(2.3.6) will be called the fixed reductuion piecerisely :linear failure rate.

The case when the failure rate parameter A is not constant is also of

interest. We shall assume that k is actually maintenance-dependent,

namely, A varies in the form of an increasing sequence as in (2.2.17).

This is the case when the mean lifetime of the repaired system decreases

with the number of preventive maintenance carried out. (From Eq.(A1,4),

the mean lifetime is inversely proportional to the A 's.) We shall

illustrate this case in Fig. 4.4.8 where the X's are defined by Eq.(4.4.4).

A
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TYPE 2 PROPORTIONAL FAILURE REDUCTION

After each X-cycle the failure rate is reduced such that each "jump-down"

is proportional to the value of the failure rate at that instant, namely,

A 1 i 0

A2  W g.rl(tl)

A 3 = g.r2 (t2 ) + g'rl(t,
)

(2.3.7)

A a a.rn(t) ... + .r1 (t1)

where
&gf. O, 11

Thus, for O = 2

r1 (t) - 2t

r 2 (t) a 29t - 2Agt 1

r3(t) a 2At - 2Ag(t 2 +(l-g)tl) (2.3.8)

The shape of r(t) is sketched in Fig. 2.3.2. The r(t) given by

Eq.(2.3.8) will be called the proportional reduction piecewisely linear

Sfailure rate.
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¢ 2.4 RELIAILITY FUNCTIONS

Recall that the syctom reliability function H(t) i related to tho

failurc rnto function r(t) by Eq.(2.2.6).

Define

°(t) WA"at' -  
N regular failure rate (2.4.1)-'

0 Jt
R(t) exp(- 0 r(x)dx) - regular reliability function (2.4.2)

For an age and maintenance dependent failure rate r(t) defined by

(2.2.13) - (2.2.21), we define

R(t) a exp(- t r(x) dx ) (2.4.3)
j0

and for t >*t 1

R(t) a exp ( - 0 r(x)dx r(x)dx - r(x)dx (2.4.4)

1- n-

S[rRj(i)] exp( -i r(x)dx ) (2.4.4')

where )1; tt )
R.(t) a exp( - r(x)dx , t - , j=1,2,... (2.4.5)

3 i-i

If all 's in (2.2.17) are constant, then

rn(t) An

which , together with Eq.(2.4.5), .ive

R (t) =exp( - t r.(x)dx

i j-1

= ex( - (x)dx ).exp( tt 2 j) (2.4.G)

Therefore, Eq.(2.4.4') becomeso
R(t) , R(t).exp (t j-tj-l). j + (t-t nl)4n (2.4.7)

J=1



(1) FIXLD RLDUCTION! IcELIAI;ILI'T FUNLCTION

for fixed reduction, (2.3.4) and (2.4.7) sives

0 r rfl
R(t) - R(t) oeP-j L (Z-l)(tj-t j. 1 ) + (n-l)(t-tn_) j- (2.4.2)

j-1

For constant operative-cycle and maintenance-cycle times (periodic

operative-maintenance schedule),

t - n.t1  (2.4.9)

we havo, 0

R(t) - R(t).OxpI (n-l)(t - Xnt)/1 (2.4.10)

- 2 --- j R(t) - exp( -;t 2 + 2(n-1)(t-ant 1 )g at 1 ) (2.4.11)

(2) PROPORTIOINAL REDUCTION RELIABILILY FUNCTION

For proportional reduction, .with 'r(t) given by Eq.(2.3.9), we have,

exp(- (t2 - tC C i )

R(t) exp(-A't + 2Atgtl (t-t1 t1()t1,tl2)
exp(- 't: 2 + 2 Ag[1;2+(1-g)tj1t - 2 tg(t 2l+t28 2 ) -a;t t~~

2 2 1t2 2Ct'3

: (2.4.12)

I

II II I l lJ N I . :



2.5 PROADILIT1 DENSI2Y FUNCTIONS

The probability density function f(t) of the lifetime T is related

to the failure rate r(t) and the reliability function R(t) by Eq.(2.2.7).

Define

0
f(t) a (iR(t) = regular lifetime p.d.f. (2.5.1)

and

t t ,tn ) f(t) = fn(t) - rn(t)R(t) (2.5.2)

Thus,

OF l ( t ) Z r ( t ) l ( t ) r t ; o t I )

f 2 (t) 2 r2 (t)R1 (t)R2 (t) , t (, t 1,t 2 )

f(t) - . n-i (2.5.3)f = ) nc(t)R nt)T- ,1 Rj ;6Etn-, tn)

* j=l

Note that
0

t:[O,t1 ) fl(t) = f(t) (2.5.4)

(1) FIXED REDUCTION PROBABILITY DENSITY FUNCTION

For fixed reduction failure rate, Eq.(2.3.6), (2.4.10) and (2.5.2)

give

0 0
f(t) ( r(t) - (n-')A ) R(t) exp( (n-1)(t-Ynt)A\) (2.5.5)

0 0
((t) - (n-l)A R(t) ) exp( (n-1)(t-nt )A) (2.5.51)

~ 2 31 2 a 2gt;1

fn(t) = [2)% - (n-l)A ) exp( -t 2 + (n-l)(t-nt 1 )A ) (2.5.6),

and the shape of f(t) is sketched in Fig.2.5.1.
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Fig. 2.5.1 Lifetime probability density function with Cixod reduction.



(2) P1OPOTIONAL REDUCTION PROBABILITY DENSITY FUNCTION

For proportional reduction failure rate, we have for 0 = 2

2Xt-tl).exp t + 2 atl(t-tl)J ,

f~t) It- (t 2+(1-)t I-;2g(t 2+(l-g)t 1 ) t
2 22+,2(t 2.0_& )]  , E t2tt)

(2.5.7)

The hape of f(t) is sketched in Fig. 2.5.2.

Note that f (t) and f 2 (t) are the same for both fixed and proportional

reductions for a given failure reduction factor g (see Fig. 2.5.1 and 2.5.2).

Suppose there is only one maintenance-cycle and a large operative-cycle time.

In this case both fixed and proportional reductions are equivalent. The
0

curves of f(t) and f(t) (for - 2) are illustrated in Fig. 2.5.3, and

f(t) = 2 t exp(-At 2 ) , t'O (2.5.8)

f2A t exp(-A't2 ) , tE6O,t I )
f(t) t- )exp-t + (t-t) 1 , tt ; >, t 2Ztl(25.9)

Let t ¢  be the point that both curves intersect, that is,
'(t) - f(to ) - 0 (2.5.10)

or, 1 L] /
e(- It L11) = - -2 At

Expanding the exponential, we have approximately,

t 1 t -+ (1 + t2 (2.5.11)

t¢ l 2t--- for large t1  (2.5.12)

(. (2.5.12,)
t.
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ju

t1 - 0 D e t€  t1  25

And
0
f (t) > f(t) for t < to (2.5.14)

ff(t) > Of(t) for t>t0  (2.5.15)

We conclude that for large operative-cycle time and a single maintenance

operation, the lifetime probability density function with failurc reduction

is always areater than the regular lifetime p.d.f, whenever t > t1 , namely,

f " t I =40 f(t) > or(t) (2.5.16)

0
/f

0.

5C

0-0

0 1I : t¢

0 ti : t

Fig. 2.5.3 Asymptotic behavtor of lifetime p.d.if. for a
single maintenance.
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2.6 OPERATIVE TIME AND MLINTENANCE TIME DISTRIBUTIONS

We define an integer random variable N to be the number of 0-14 cycles
tbefore failure. It is obvious from Fig. 2.1.2 that

N - n 4 T - t C- [t t) (2.6.1)
t n-i' n

for n = 1,2,3,... , and to=O.

Note that for a renewal erocess (Parzen (1962)) the expectation of Nt is

called the renewal function. We shall use the expected value of lt
namely, EC Nt) , to compute the approximate mean uptime and the approximate

mean lifetime for a periodic operative-maintenance schedule ( Eq.(2.6.22)

and (2.6.23)).

Since the system may fail during the nth O-cycle (i.e. in Ct , ) )
th n-' n

or during the n M-cycle (i.e. in CT nt) ), we further define the

following two randowm variables T n and Tdi n related to the system

lifetime T :

For n - 1,2,3,...

th
T ul n'  operative time before failure in the n O-cycleujn (the th

(the n O-cycle operative time)
Tdi n  maintenance time before failure in the n 1-cycle

(the nth M-cycle maintenance time)

such that

n-1 Tuln , if -0 when Nt-n

T - (2.6.3)

Vn din , if N--Q when -n

It is evident that
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o Tui u (2.6.4)

and

0 Tdin d n  (2.6.5)

Furthermore,

0 T' uln < ' Un T Tdl n .0 (2.6.6)

0 <T < d T u (2.6.7)
TdIrx n uIn n

The relationship of T ,Tu n  and Tdin is illustrated in: Fig. 2.6.1.

t-- u n  d dn--

Tu~n Tdln

* I

S II I , a -

o ?I t t * ' t
1 1n-. ni n( ,

System
lifetime or

T j
Possible failure instant

Fig. 2.6.1 Lifetimes relationship before failure.



Next, we shall compute the probability density functions of Tul n and

TdI n , denoted respectively by

fT and

Suppose Nt = n and the p.d.f. of T assuues the shape shown in

Fig. 2.6.2 in which the fn(t). is defined by Eq.(2.5.2)-(2.5.3).

n

n-ni n n
th

Fig. 2.6.2 ;Lifetime probability density function in the n O-1 cycle.

f ul(t) f~l(t)

D
n U

U + D n
n n

U+D

U +D U +D
n nn

0 u n 0 d n

Fig. 2.6.3 P.d.f. of T .l :Fig. 2.6.4 P.d.f. of Tdi
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Let U and Dn  be the shaded areas in Fig.2.6.2, that is,

n n

U f (x)dx (2.G.8)

tn-i

and

D - f (x)dx (2.G.9)

Obviously,

J t

- f n(x)dx

tn-in

= n + Dn  (2.6.10)

The p.d.f.'s T and f have the same shape as that of the

P.d.f. of T in tn.I,tn) and Ctn,t n ) respectively. Both are depicted

in Fig.(2.6.3) and (2.6.4).

From Eq.(2.6.6) and (2.6.7), we have

U
P fO T u n PI Tn 0l (2.+11~u'Ir1I <d U n n

. P < Td T n dn = P{T un D (2.6.12)

n n

Then,



f n (t n -1 + t )0 < u

Un +Dn

D
n t=u£T ()-U +. D n (2.6.13)

Tuln n n

0 otherwise

Un t- 0
U +D

n n

fT (t) a fn¢n t) o < 26.< ddIn U + D n (2.6.14)
n n

0 otherwise

Furthermore, from Eq.(2.5.3),

n

U f J n(x) dx

n-1
Sr (X)Rn(X 

Rj(t.) dx
n-1 j =1

tR~t ( 1 R ("Cn) 3(2.G.15)
j=l

- nD- f Wx dx

n

n- rn(x)Rn(x R.(tj) dx
n j-1

n-1

- rF R.(t 1) ][ R(r)-R (t) (2.G.16)TLi.n. n n.J-1
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Eq. (2.6.10) and (2.6.16) give

P f "Nt "n U + D
nI n

n-i - PfNt - 1 - 1- R(t 1) (2.6.18)

The average number of 0-M cycles is given by

E-€NtJ -- L n.Pft'.n-
n-1

[1-Rl(t1 )J 2[ R(t 1 ) -R( t1)R2(t2) (
00,(, nn

n Z ) t f-(t-) (2.)R(t) )n=

Or,
3t - 1 ( t - r-)(x) } )(2.6,1')

1 + TfRi t 1(2.6.191)

n-1 j=1 j-1

th
Similarly, the k moment of N is given by

E Nk) Co "I nk bny
nCi

E nk. 11 Rj(tj) j1 R n R(t n) ](2.6.20)
n-l '.j-1



Note that if there is no maintenance operation, or the operative-cycle

-time becomes infinite, then

tl- 1 O -Or R 1(t 1) -00
1 1

and Eq.(2.6.19) becomes

lim  ECNt] = 2 (2.6.21)

That is, there is only one O-cycle. (See Table 4.4.1 and Fig. 4.4.3 for

a numerical illustration).

We may use the mean O-M cycles Er N t ] to compute the approximate

mean uptime and the approximate mean lifetime $or a periodic operative-

maintenance schedule ( (2.1.1)).

Define

Approximate mean uptime 2 u.( EC Nt 3 - Y ) (2.6.22)

Approximate mean-lifetime A ( u + d ).( ECNt  - Y ) (2.6.23)

We shall see that Eq.(2.G.22) and (2.6.23) give consistent results as

u - w (See Table 4.4.1 and Fig. 4.4.4-4.4.5).



S2.7 REPAIR TIME DISTRIDUTION

When ths system fails, it is in the state for a complete repair,

replacomont or ronewal. The time spent is a random variable caled te

repair time Tr with distribution function

and probability density function

p(t)

For simplicity, TF. is assumed to statisticalLy independent of the system

lifetime T , and TF is exponentially distributed,

p(t) - p exp( - pt) , t>O (2.7.1)

=t 1 - exp( - Ft) , t >O (2.7.2)

We shall see that other distributions may be used and the independence

assumption may be dropped, but we have to handle double integrals, instead

of single integrals in evaluating the probability of stochastic availability

(see § 3.2).

z.

I



CUAPTER 3

STOCHASTIC AVAILABILITY

3.1 DEFINITIONS OF STOCHASTIC AVAILABILITIES

We define the following random variables with reference to Fig. 2.1.2

and 2.6.1 :

T UP total uptime before failure when the system is operative

Town a total downtime during which the system is not operative

n-1
T UP in A7 + Tul

Jml n - 1,2,3....

n-1

Tdownin a d + TdIn + TY

where the summations are defined to be zero for n - 1.

The following stochastic availabilities (A) are defined

(1) Stochastic Cycle Availability (Stochastic Availability for a complete

Renewal Cycle) A

A -- (3.1.1)

UP Tdown

39
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(2) Stochastic Availability for the nth 0-M Cycle AN n ( An )
31 t

T
ANn An U upIn (3.1.2)

T Up In + TdownIn

n-1

7- i +Ti~
" (3.1.2')

jm1 j 1

(3) Stochastic Availability for the nth O-cycle AOn

n-i
7- u i + T u~n

j=1
An n (3.1.3)

n -uj + Tun +E dj + TF

j l j-1

AN- JTal (3.1.3')

th
(4) Stochastic Availability for the n 14-cycle A,,

n

n

j-1

AM n (3.1.4)

. + t d. + Td + TF

j-1 j-1
'! Jn T• (3.1.4')

N 
-mn
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(5) Stochastic Availability at a Finite Time in the n th 0-1t Ccle At

(Finite Time Stochastic Availability) n

n-l

n-1 n-

uu + min(,T n) +

At 2 (3.1.5)
,Ji .1, 121 < .

At jmi j-l

Hece A A n(3.1.5')

n n

12i

n n-1 n

7-uj + dj +,min(t,Td In) + TF

J-1 j-1

Hence, A At 
(31.5)

n

AM " n
n

(6) Stochastic Availability for an Age Replacement Time AtR
AR

t a uptime before failure in [0,t R )

uptime before failure
in 0,tR) + Total downtime

where tR  is the age replacement time. See 4.2 for more detail.

We note that the stochastic availabilities defined above are in the form

uptime

A uptme downtime (3.1.7)

where the uptime means that the system is operative and the downtime means

that it is not operative such as in the maintenance or failure state.

Since the uptime and/or the downtime are in general, nonnegative random

variables, the stochastic availability is therefore random and less than unity.



3.2 PROBADILITY DISTRIBUTIONS OF STOCHASTIC AVAILIAILITY

We have defined various stochastic availabilities A. in tho proviouo

section. We shall derive the probability of the form

P fA>-1} , 0<,<1

in this section and in § 4.2. We shall begin with the stochastic cycle

availability.

By the total probability theorem,

P f A c 'i-I
(:D

- A > , I .rl} P fNt-n
n-l

- P PA n.l -E P1{Ngtr (3.2.1)
n=l

T ( P{IA n ),I PlndunTuln ou~ n J3..2

n=1
OD + ?I AO >, - } P T dn=O ' P Nt=n I  (3.2.2)

Consider Ao >0  1 - E
n

n-1n
7-1 n-1

Ld +T - V%. -l (3.2.3)
TF N i. Tuin +I - L.J1 :

jal i-i
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The domain of dofinition of Tuln and TF is shown in Fie. 3.2.1.

Let f TunTF(.,.) be the joint probability density function of Tuln and TF

By the indopendence assumption (j 2.7), we have

fTulnTF(x'y) - fTuln (x)p(y) (3.2.4)

Define

n-1

t(+) 1  + 0+0- max f 0 z . (3.2.7)

u max U n_1 , (3

n -n- = u.u +( -l (3.2.=

Then

1j~l j=1
And

= J fTufl,TF(xhf) dxdyil l

n1 nn-1 n-i

max) I t 7= uj 2dj

) j lnp(y) d:y dx

1n-i

tx tP+ U(x)t Z d)d

P- A. >i I E
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n-l n-1

U.

" S" n-1, n-i

t 0 W.,- -

0,A .... z.."r

a--

'-i I..-' " .. 2 4 "

0 .'" Store a
0 T.,, ' t

<0 p

0 I.ft6, is

Fig. 3.2.1 Domain of definition of TuIn and T.

uj



4L)

Let z = x + t and from Eq.(2.G.13), we have
n-11

S .. d.) niz (3.2.0)
t(+) n n J ul

n

n (3.2.10)

U +D
n n

Next, consider

AM 1 -E
n

n n-

E~ u. + di d +  +TTu-n

,Jul J=l _ uIn + F

E n n-I

TF + Td n nu di (3.2.11)

The domain of definition of Tdi and TF  is shown in Fig. 3.2.2.

Let fT T be the joint probability density function of
dIn' F

Td n  and TF  and by the independence assumption (g 2.7),

f (X,y) = fTd(X)p(y) (3.2.1-)
Td;.TFr Tdin

Let

g n n-l
d- a max 0 0, mi fdn -. u._ dN I (3.2.13)

t(-) T , + d(-
n n n

-max minftn t~ + A-j. u T- dj} ? (3.2.14)

jul jul
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n-i n-i

T, + T <

knon-

TFI

o ,r

is

oj

T<, 1_.

.Z.I4j .Z.

0 ".
J14

oSao

. '..-

Fig. 3.2.2 Domain of de'inJ.tion of Tdin  and TF

diin F



Then,

P{ A. )I1-C
n

n n- 1
P~~T1 U di d.~~jl1 Jujl

a ft fTdln'TF(xPy) dxdy

(d n n-I

- fT dn(X) 1 p(y) dy dx

X-Y=O

fd(-)
n n n-1
o (x) +( -X+ n  -u-- =d dx

TdIn j.l j-1

nd n
1. Wx -(x+t ) +) z dx

.0 Tdinn 1f =

Let z = x + IT and from Eq.(2.6.14), we have
n

t(-)

IA. >,3 - n u( ) .d (3.2.15)
nn n n j-

-" 
(3.2.16)

U +D
n n

From Eq.(3.2.1), (3.2.2), (3.2.10), (3.2.16), (2.6.11) and (2.6.12), we

have

1 - 2.~ (3.2.17)
(Un + Dn)2

Eq.(3.2.17) and (2.6.10) give the probability distribution of the

stochastic cycle availability
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c ,I-Ii(3.*2.13)
nl U + D

n n

The finite time stochastic availability can be computed similarly by

the following changes (see Eq.(3.1.5) and (3.1.5"))

A A
un 1 min(t,u n ) 0<t a t- t u

n n n
V VTn I- mi d )(..9

tn min(t, n)  (3.2.20)

n n n n-* I_W I
t n 6- t i max f f~~ Ed.W jml 9 n n (3.2.21)

mt-  :, t = a {min( min(t,t ), t n _. - "- t7l

t n n-/_,rd )  dz l

n (3.2.22)

-(z) ( z +

nim

Then,

(U+ D) tEn-t

n A.' i} LDE It~+~ = - (3.2.23)

The probability distribution pf the stochastic availability for an

age replacement time will be derived in j 4.2 (Eq.(4.2.9)).

The probability distributions are summarized in the following
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PflOBAIILITY DISTRlIBULTIONS

Pf NtanI U + D
tn ni

P{Td. ' l p PfO*$T ;<un - Un/(U n+D n
P , T l n = n = P {1 0< T di n . IJ ' D /(U + D )

p O>'1-1 - 9J.n/ (Un+D.)

n-

p JM 'v' n (U +D. )

P( A 7,1)

(P fAd D ,>3 -C E(zU Wn cl M Un

nn-i

4t~ ~ /(j Dn te'n- nln n-

(t)l n- n)+qnrvl-K-~

'In~ Sftn f n(z)(t D = n f (z)dCz + 1 E~d
n-1 ni fn *j

m a x~~~~t ,d ;S d ; .0''I

n-iLi - L-JJ nn t tj~i n

(tt 
Wmn t? -

xt 
nn n-i

t t 2 1Il L ntn nd nI

t0< 1-1 1



o 3.3 ASYMPTOTIC DISTRIIIJLUTION

We shall study the behavior of Pf AC)l-E as the operative-cycle time

increases indefinitely (that is, no maintenance, ul-V1 -V ). This

asymptotic value will be denoted by

P

Recall from Eq.(3.2.18),

P alim P AcA-> 1 - lm 5 (U it.+D .9)/(U +D
1D 'V: 1 n hn nn n n

Slim 'iL1  (3.3.1)

=lim [1 f, (z)~(L z) dz

O-9D

0
-S n c f o ( t ) E' t ) d l ( 3 .3 ,2 )

Since
0
f(t) - ,=t '-1 exp( -,At) (3.3.3)

t).- -exp( )t (3.3.4)

Then C
T 0('t-1 exp(_ tU") [1 - exp(-ll) J dt

= 1 - K t1 t' exp (- t) dt

,'I = 1 - z1 exp(- Z') exp(- U. z) dz *t

I1-e1ex( (3.3.5)

"!; ; ,Al-E)

where

X¢t), " x¢ t)exp(-st;) dt X¢) (3.3.G)

is the Laplace transform, or

X(t) 4-, x(s)
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CASE 1 o= 1

P I 2. Iexp(-t)) I
r I I S W AAl(1-i )

-= 1 - s 0s,,11 (1

1/ x (3.3.7)

1/). o [ (1-t)/e 3(1/p)

P ( = /A (3.3.8)

co + 1/p

-- Ac W(3.3.8')

Eq.(3.3.7)-(3.3.8) are the same as obtained by Martz (1971) in Eq.(1.1.9)

and (1.1.10).

CASE 2 Q(= 2

P = 1 - 2t exp(_t2)j I s PI/I-(.

From standard Laplace transform table,

exp(-t 2 ) 4-0 Y /' exp(Y4 s2 ) erfc(ys) (3.3.10)

where O

erfc(x) 2 exp(-z 2)dz (3.3.11)

is the complementary error function (see e.g. Abramowitz and Stegun (1972))

Apply the differentiation theorem for Laplace transform to Eq.(3.3.10),

2t exp (-t 2 ) exp(S 2 ) erfc()

ds 4 /. exp (Y2 [~L eP..2d)

2
- -9 exp(II's ) erfc(;/s)

+ V E - .2  exp(-Ys 2 ) )0 )

-1 + 2 1 exp( s ) erfc(Ys) (3.3.12)



Lubstituti I1.(3.3.12) into Eq.(3.3.9),

P T/ (-a) MXp((a' ) erfc(I) j A ~ .. I.

- exp(s2) erfc(s) (3.3.13)
IS u 2A(-L

Some asymptotic values are tabulated in Table 3.3.1.

s erfc(s) P

0.1 0.1 1 5/9 0.43211 0.5794

0.1 0.05 1 10/9' 0.11611 0.7859

0.1 0.1 2 10/9 0.11611 0.7859

0.1 0.1 1.5 5/6 0.23878 0.7063

0.15 0.1 1 15/17 0.21227 0.7231

Table 3.3.1 Some asymptotic probability values of

stochastic cycle availability.

.1i



CHAPTER 4

0 P T I M U M.1 S Y S T E M D E S I G N

4.1 PERIOD1C OPERATIVE-MAINTENANCE POLICY

We have mentioned in 9 2.3 that for the case of system performance and

management, it is more efficient to have a periodic operative-maintenance

schedule, namely, constant operative-cycle time u and constant maintenance-

cycle time d (Eq.(2.1.1)). Normally, the maintenance-cycle time d is

more or les .fixed by the system parameters and we may free to choose an

optimum operative-cycle time u* such that certain performance index is

satisfied in order to give an optimum system.

Classically, as a performance index, the minimization of a long term

average operating cost or the maximization of the system availability has

been proposed (Barlow and Proschan (1965)). Since we have defined

availability as a random varoable, we may choose the criterion of maximizing

the probability of stochastic availability with respect to the operative-

cyrcle time to be an optimum policy. In this case we shall have a

probabilistic guarantee instead of using averaged quantities. We sbill. see

in Chapter 5 that this concept is equivalent to that of minimizing an

appropriate system cost function.

If we plot PIAc > l -£4 versus u where Ac is the stochastic cycle

availability and O< 1 < 1, we expect the following

(1) If there is no failure reduction, P1ACl -tj increases-with u because

the more frequent the number of preventive maintenance, the less is the

availability.

(2) If there is a failure reduction due to the maintenance operations, there

may exist an u such that P{ A0c >, i -Et is a maximum.

(3) As u increases indefinitely, there is essentially one operative cycle

and no maintenance operation, therefore, (see 3.3)

lim P1 Ac -. =

53



The above reasoning Is illustratod in Fig. 4.1.1 and the conjecture

will justified by examples in 4.4

P1 A a0 , 1

with failure reduction

P

no failure reduction

Fig. 4.1.1 Probability of stochastic cycle availability versus

constant operative-cycle-tim~e for periodic 0-9l schedule.



From Fig. 4.1.1, vie may choose an optimum operative-cyclo time u in

one of the following criteria

(a) If there a failure reduction, choose

where max Pf Ac>l-} (1
u

is achieved.

(b) If there is a failure reduction, choose u such that

c R(412where SWR P OD ( P + X) , 1 >0O

(c) If there is no failure reduction, choose u to be the first time

such that the total operation cost is as small as possible, namely,

P I A c *g 1 1- (4..3
where 6U -(P -) ' Wl4.

The above criteria apply the concept of maximizing the probability of

stochastic cycle availability and probabilistic inequalities in system

design. Other stochastic availabilities may be used. In particular,

the stochastic availability for an age replacement time will be considered

in 4.2 and the concepts will illustrated numerically in j 4.4, 'de

shall show that these concepts are equivalent to those of minimizing the

probability of an appropriate cost function and the corresponding

probabilistic inequalities involving this cost function in Chapter 5.

"*



4.2 AGk REPLACEENT POLICY

When the sytem failure rate increases with age and system failure is

costly, it is usually rcheduled to replace or renewal the entire aystom

before it has aged too preatly. This is called an age replacement policy

(Darlow and Proschan (1965)) which replaces the system at a time t R after

its installation or at failure, whichever occurs first. The time t R  is

called the ape replacement time. We shall find an age replacement time for

the repairable syutem with an age and maintenance dependent failure rate

using the concept of stochastic availability.

Suppose the age replacement time t R  is chosen to be at the end of the

K operative-cycle (Fig. 4.2.1), that is, the system is replaced instead of

doing preventive maintenance after the Kt h 0-cycle, where the value of X

or equivalently, tR  is to be determined. We have, from Fig. 4.2.1,

K K-b
t a t K  u -. + Zd (4.2.1)

R j.1 j.1

dKM 9 0 (4.2.2)

age replacement time t

1time

=! 0 11 - o

-Fig. 4.2.1 An age replacement schedule.



Dofine atochastic availability for an age replacement tinic tR

uptime before failure in [O,tR)
AAR a (4.2.3)

uptime before failure in (O,t) + total downtime

Note that tRlr AA - Ac  (4.2.4)

AR c

Let T denotes the system lifetime, then

fbr n 1,2,3,...,K . T E Ctn-l t)

let n-I
5- uj + Tuln

An-i n-I (4.2.5)

AAjn + ~T + ET d
j~l uj un ++~ d Tdln + TF

a A 1t - An  (4.2.5')

where
0 0 and TdIK 50 (4.2.50)

For T t (=-twith d, 0,
R

let K

A AR(K+I) K K (4.2.6)

KK

. . ~ u.E d. + TF

4 J-mi "

= 2--" uj / (t+ TF) (4.2.G')

At T(.J-1

! - Aj;I with Tdl K -" 0 (4.2. G)



Consi.dor

- P uJ /(tR+ F) > i

j-=1

K '

1( z U - t
o (4.2.7)

relae fn Zi . -y 7he tota poaiiyteeE..5) (4.2.)is the distribution function of the repair time (Eq.(2.7.2)).

ti

K th at

n=l 1.~

Now w co +Dut th prbblt ftesohsi viaiiyfra g

P f {A~~~ I- P t~ f{t~l +t- +Z Pj fAR) i E T >~ n P {Ntn
n -i ,l KK C

UD + D K K-i

n1 U + D n=K+l j=1 .-
n n

- ~VnL+DA K KjziL-i~r~(HLl
+ + E d ) 1 -D

U +D K 1!r~u -r- i -JJ. r-(Un n)
,j-l n n j=1 j=l j=



1 1- K K-i

n-1 On DnDnUljr1 i-i

(4.2.9)

As t R . , i.e. K- , we have
AR

.lira AtR - A c  (4.2.10)

and

P >p -,} = P 'Ac -£t(4.2.11)

For a periodic operative-maintenance schedule, we expect that the graph

of P{AR I-II versus tR to have the shapes shown in Fig. 4.2.2 for
system with failure reduction. The curves are justified in 4.4. 'These

curves are similar to those in Fig. 4.1.1. Hence we propose the following

age replacement policy:

(A) If the plot of Pf AAR)l-C versus tR for a given u shows a
maximum, then choose

tR } (4.2.12)

ma. P{AA i-4

tR*C

is achieved.
() If the plot of P { A l-i versus tR for agiven u shows a

cr maximum, then choose tiR such that

-4 R

mr fA1-1 or tRt cotR

where ( 4.2.13)

max = -(P> +(4 ,.1o

( P A R > 4 (frs the given u )

P¢R

maxmum then
A ''

.coose t suc tha



bU

(C) if the plot P A, a/1- versus t R shows no peak, than chooso

t to be the first time such that

I QAR }I (4..Q4
where(4..4),h,-, ' l - ( P -J) , J;o

In any of the above caes, t, is chosen to be at the end of a.

Kth O-cycle.

P {A t R 1- t}

u near u

IQ'
* p uularge

*I

!R

0!

- tR. ,t

.Fig. 4.2.2 Probability of age replacement stochastic availability

versus age replacement-time for failure reduction case.

I g
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Othor types of age replacement policies can be proposed. Usually,

system failure during operation is a serious problem than when it fails

during maintenance. A simple age replacement policy based on this idea

is stated below :

The repairable system with maintenance schedule is replaced

when the probability of system failure during operation is q

where qE(0,1), say, q =

Ie have from Fig. 2.G.1, the probability distributions summary in 3.2,

and the total probability theorem,

P f Failure durine operation}

OD

P{Failure in the nth O-1,1 cycle j Nt=n P{ Nt=nl

nwl

Z:~ PIJT din 0 Pi N t=n

n=1
OD

Un U Un + Dnn-1 U + D
n n

O
Un 1 (4.2.15)

n=l

In
= n n(z)dz (4.2.15,)n tn-1

For an infinite operative-cycle time (no maintenance), u o co,

lim u0
Y Un f(z)dz -1 (4.2.1G)Su--W QD n=1 0

That is, the system will ultimately fail as expected. With the age

replacement ti t chosen to be the end of an operative-cycle, theR
probability curve P IFailure during operationt versus t R  is a

monotonic increasing function (Eq.(4.2.15-)), and is depicted in Fig. 4.2.3.



Pf F ailure during operation}

q

tR
0 

t

Fig. 4.2.3 Probability of failure during operation versus

age replacement time.

"



, 4.3 COMPUTATION

We have studied a repairable system with age and maintenance failure rates,

stochastic availabilitios, periodic operative-maintenance policy, and aae

replacement policy. We shall study various characteristics of the repairable

system via examples.

In order to evaluate various probabilities of stochastic availabilities,

a computer program is developed for computational purpose. The program is

written in PASCAL language and is simulated by an APPLE II PLUS (1000 model)

microcomputer with 48K memory.

Normally we assume that the statistics of the system failure rate

function are known or can be estimated. We shall mainly concern with the

periodic operative-maintenance policy, that is, fixed maintenance-cycle time

(d) and constant operative-cycle time (u) . Variable operative- or

maintenance- cycle :times can be considered by a slight mndification of the

computer program.

The program has -to evaluate t"he probability distributions of the

stochastic availabilities. In particular, the stochastic cycle availability

(Eq.(3.2.18)) involves an infinite summation. An upper limit of the

summation is assigned to be an input to the program and the program checks

the difference between two consecutive partial sums whether it is less than
-710 which is the accuracy of the machine. Simpson's rule is used to

evaluate all the integrals with the number of integration points as an input.

The number of integration points is about 3C-50in the examples ( 4.4).

The number of summation varies from 10 to 1000 or more and it depends on the

failure reduction type and failure reduction factor 3 . Since all

quantities involved in computation are nonnegative, various checks are made

to ensure this nonnegativity. Underflow or division by zero is suppressed

to give correct results. Since the machine has limited accuracy and low

speed, numerical difficulties occur quite frequently. If the program were

written for a large computer with double precision, accuracy and speed will

be improved but with a tradeoff of higher cost.

At



The inputz to the computer program are

(1) , C< 1

(2) o , usually f= 2

(3) A 00 ,A , whore An = AW-( - 1 )exp(-(n-l)/l 0), n=1,2,...

if 1 = A ten An A constant

(4) Reduction type t
0 =- no reduction

1 - fizod reduction

2 = proportional reduction

(5) Reduction factor 04g4 1

(6) Kaintenance-cycle time : d

(7) Operative-cycle time : u

(8) Iaximum number of summation

(9) Integration points, e.g. 30.

The outputs from the program are

(1) P fAc)11- C

(2) ECNt I

(3) t t

(4) P AAi >11
(5) P fAo n.J.

n

n !
(7) P {A 1 I

(9) Approximate mean uptime
(10) Approximate mean lifetime

A numerical illustration of the computer program is given below.

A complete listing of the program is given in Appendix 2.

* I



DATE : APRIL Ii :?32

:* STOCHASTIC AVAILABILITY $
<*$ FIXED REDUCTION W*>

REDUCTION FACTOR = 0.50000
E = 0.10

APLHA = 2
LAMDA = 0.1000

MU = 1.0000
MAINTENANCE-CYCLE TIME = 0,01000

INTEGRATION = 36 POINTS

OPERATIVE-CYCLE TIME = 2,00000
N PEAC>I-E3 EEN(T)J ART PCAAR] PEAO PEAM] PCAN3 P[N(T)=*J]
1 0.005281 0.04 2.000 0.196705 0.134662 0.0018994 0.1346804 3.95958E-2
2 0.026384 0.19 4.010 0.338688 0.285096 0.0024982 0.2851142 7.45501E-2
3 0.068266 0.49 6.020 0.442228 0,416777 0,0029526 0.4167966 1.01117E-1
4 0.129460 0.96 8.030 0.514615 0,525566 0.0032888 0.5255858 1.17100E-1
5 0.204088 1.57 10.040 0.563100 0,614410 0.0035316 0.6144296 1.22117E-1
6 0.284313 2.28 12.050 0,594186 0.686677 0.0037008 0.6866968 1.17430E-1
7 0,362529 3.01 14.060 0.613240 0.745359 0.0038123 0.7453783 1.05454E-1
8 0.432853 3.73 16.070 0.624386 0.792967 0,0038789 0.7929869 8.9108E-2
9 0.491782 4.37 18.080 0.630594 0.831574 0.0039111 0.8315921 7.11892E-2
10 0.538133 4.91 20.090 0.633874 0.862872 0.0039147 0.8628907 5.39567E-2
11 0.572528 5.33 22.100 0.635509 0.888245 0,0038982 0.8882622 3.88987E-2
12 0.596692 5.66 24.110 0.636271 0.908812 0.0038655 0.9088285 2.67000E-2
13 0.612809 5.88 26.120 0.636598 0.925485 0*0038200 0.9255010 1.74857E-2
14 0.623035 6.04 28.130 0,636724 0,939002 0.0037667 0.9390177 1.09343E-2
15 0.629219 6.13 30.140 0.636764 0.949965 0.0037052 0.9499802 6.53417E-3
16 0.632786 6.19 32.150 0*636772 0.958857 0.0036409 0.9588719 3.73393c-3
17 0.634751 6.23 34.160 0.636770 0.966072 00035703 0.9660853 2.04153E-3
18 0.635785 6.25 36.170 0.636767 0.971926 0.0034987 0.9719387 1.06844E-3
19 0.636307 6.26 38.180 0.636764 0.976683 0.0034257 0.9766957 5.35445E-4
20 0.636558 6.26 40.190 0.636762 0.980547 0.0033518 0.9805588 2.57031E-4
21 0.636674 6.26 42.200 0.636762 0.983689 0.0032777 0.9837007 1.18218E-4
22 0.636725 6o27 44.210 0.636761 0.986246 0.0032038 0.9862578 5.21078E-5
23 0.636747 6.27 46.220. 0.636761 0.988329 0.0031303 0.9883393 2.20159E-5
24 0.636755 6.27 48.230 0.636761 0.990033 0.0030587 0.9900427 8.91778E-6
25 0.636759 6.27 50,240 0.636761 0.991418 0.0029856 0*9914276 3.46367E-6
26 0.636760 6.27 52.250 0.636761 0,992559 0.0029136 0.9925676 1.29011E-6
27 0.636760 6.27 54.260 0.636761 0.993488 0.0028449 0.9934969 4.60882E-7
28 0.636761 6.27 56.270 0,636761 0.994259 0.0027774 0.9942664 1.57929E-7
29 0.636761 6.27 58.280 0.636761 0.994889 0.0027089 0.9948979 5.19149E-8

OPERATIVE-CYCLE TIME = 2.00000
PC SCA> 0,90 3 = 0.636761, [293
MEAN O-M CYCLES = 6.26696

MEAN UPTIME = 1.15339E1
MEAN LIFETIME = 1,15916E1

Table 4.3.1 Numerical illustration of the PASCAL computer program.



4.4 UMMIR.?CAL EMPLI'S

In this section examples will be given to illustrate various concepts

developed so far and to explore the characteristics of the repairable system

with ago and maintenance dependent failure rates. In particular, Fig. 4.1.1

and 4.2.2 are verified. The asymptotic values in Table 3.3.1 will be used

in all the examples.

EXXA-PLE 4.4.1

'We consider the repairable system with various failure reduction

criteria, namely,

(a) no reduction (NR)

(b) fixed reduction (FR)

(c) proportional reduction (PR)

for a piecewisely .linear failure rate with the following parametars

o{= 2, F o-0.1, =0.1, p = 1, d = 0.Ol, g = 0.5

The failure rate functions for fixed and proportional reduction are plotted

in Fig. 4.4.1. The values of P f Ac> 0.9} , Er t 3, approximate mean

uptime (Eq.(2.6.22)) and approximate mean-lifetime (Eq.(2.6.23)) for

(a) rf, (b) FR, and (c) PR are computed using the PASCAL computer program

(Appendix 2) for various operative-cycle time u , and they are tabulated

in Table 4.4.1.

P {Ac?,-0.9 I. is an increasing function of u for no reduction and it

" has a maximum for both types of failure reduction. For all types of failure

rates PjAc>0.91 approach the asymptotic value P (n 0.5794, see

Table 3.3.1). These curves are plotted in;Fig. 4.4.2 which when compared

* with Fig. 4.1.1, the statements made.in § 4.1.1 are verified.

From appendix 1, Eq.(Al.6), the regular no failure reduction Weibull

mean lifetime is

, 8.86



r(t)
/

slopc I / slope 2 (1-G)A'
/

/
/

/

II
2tu Fixed reduction

- A =0.1

g 0.5

t
0 t,=u+d 2(u+d) 3(u+d) 4(u+d)

r(t) *O
",/
/'/

iJ/
2AU

- Proportional reduction!0.1
S0.5

p t
0 (u+d) 2(u+d) 3(u+d) 4(ud)

Fig. 4.4.1 Linear failure rate for fiLxed and proportional reduction.
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LjU

P (Ac >, l-Ej

0.8 proportional reduction (g=0.5)

0.7

fixed reduction (0=0.5)

0.6

0.5794.

no reduction ( or g-sO)

0.5

d 2
0.4 . 0..

* * J o.1

d 0.01
g 0.5

0.3

0.2

0.1

0 I I i I u

1 2 3 4 5 6 7 8 9 10

Fig. 4.4.2 PIA0 li.1-) versus u for various reduction criteria.



A)

This is the asymptotic value for an in inite operativo-cyclo time or when

there is no maintenance operation (only one operative-cycle). ThIus,

as u -- w,

LE N3t 3 1 (4.4.1)

Approximate mean uptime -1 IT /2/A (4.4.2)

Approximate mean lifetime - /I /2/A (4.4.3)

as indicated in Table 4.4.1. The graphs of EC U I versus u , the

approximate mean uptime versus u , and the approximate mean lifetime versus

u are plotted in Fig. 4.4.3, 4.4.4, and 4.4.5 respectively.

EC N
9 , _ Proportional reduction (Z=0.5)

8 Fixed reduction (g=0.5)

7 No reduction (or gO)

6

E-0.1

5 ; =0.1
p.= 1
d - 0.01

4

3

4 2

1

0 1 I u1 2 3 4 5 6 7 8 9 10

Fig. 4.4.3 Mean O-M cycles versus operative-cycle time.
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fixod reduction
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2

0
94 9
9.

no reduction

I ; g. I I I i | u
0 . 2 3 4 5 6 7 8 9 10

Fig. 4.4.4 Approximate mean uptime versus operative-cycle time.

11 j proportional reduction

ra
4j

a)

X 9
0

no reductiLon

0 1 2 3 4 5 6 7 8 9 10

Fig. 4.4.5 Approximate mean lifetime versus operative-cycle time.
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EIP L, 4.4.2

-e shall study the characteristic of parameter variations of the

repairable system with rixed reduction (proportional reduction is siJmilar).

The valuos of Pt A~c I- versus the operative-cycle time u for 0 = 2

(fixed reduction) are computed by the PASCAL computer program and thcy arc

tabulated in Table 4.4.2 for different variations of parameters

£,A ,p, d, g

The asymptotic values V of the stochastic cycle availabilities haveCD

been computed in Table 3.3.1. The corresponding curves are plotted.

(1) REDUCTIOn! FACTOR VAPIATION (g)

Fig. 4.4.6 depicts the variations of reduction factors a = 0, 0.5,

and 0.9 (columns (1), (2), and (3) in Table 4.4.2). The larger the

reduction factor the more frequency of preventive maintenance is favored

to improve the system. Thus the optimum operative-cycle time u is

shorter for larger Z to have more maintenance-cycles. When there is

no failure reduction, that is, g = 0, u approaches infinite,

Note that all curves approach asymptotically P .

(2) :AI.TE:AMCE-CYCLE TIM VARIATION (d)

The variations of maintenance-cycle time (d) is illustrated in

Fig. 4.4.7 (columns (2) and (4) in Table 4.4.2). The longer the d,

the less availability of the system, hence it favors for a longer

optimum operative-cycle time u.



P fA I, 1 ,1c

( = 2) Fixed reduction

: 0.1 0.i 0.i 0.. 0.1 0.1 0.1 0.1 0.15

0.1 0.1 0.1 0.1 0.05 .o5t.10 0.1 0.1 0.1

U u: 1 1 1 1 1 1 1.5 2 1

d: 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.01 0.01

g: 0 0.5 0.9 0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.4930 0.5899 0.7787 0.1139 0.7827 0.6256 0.7078 0.7797 0./424

1 0.5379 0.6287 0.7921 0.4386 0.8195 0.7152 0.7445 0.3132 0.7675

1.5 0.5527 0.6363 0.7813 0.5189 0.8289 0.7519 0.7516 0.8197 0.7714

2 0.5600 0.6368 0.7663 0.5528 0.8318 0.7719 0.7520 0.8201 0.7702

2.5 0.5644 0.6346 0.7505 0.5701 0.8324 0.7841 0.7500 0.8185 0.7674

3 0.5673 0.6314 0.7350 0.5796 0.8318 0.7920 0.7470 0.8160 0.7639

3.5 0.5694 0.6277 0.7203 0.5849 0.8305 0.7973 0.7437 0.8131 0.7602

4 0.5709 0.6233 0.7065 0.5878 0.8290 0.8009 0.7402 0.8103 0.7505

4.5 0.5721 0.6199 0.093G 0.5892 0.0272 0.& 32 0.7368 O.U074 0.7529

5 0.5731 0.6162 0.G817 0.5896 0.3254 0.8047 0.7334 0.8048 0.7495

5.5 0.5739 0.6126 0.6708 0.5894 0.8235 0.8056 0.7303 0.8023 0.7464

6 0.5745 0.6091 0.6607 0.5888 0.8216 0.8060 0.7274 0.8000 0.7434

G.5 0.5751 0.6059 0.6515 0.5880 0.8197 0.8061 0.7247 0.7979 0.7407

7 0.5756 0.6029 0.6431 0.5871 0.8178 0.8059 0.7222 0.7960 0.7383

7.5 0.5760 0.6002 0.6355 0.5861 0.8160 0.8055 0.7199 0.7943 0.730

8 0.57G3 0.5976 0.6286 0.5851 0.8142 0.8050 0.7179 0.7929 0.7340

3.5 0.5766 0.5953 0.6224 0.5842 0.8125 0.8043 0.7161 0.7916 0.7323

9 0.5709 0.5932 O.G108 0.5833 0.8108 0.8036 0.7145 0.7905 0.7307

9.5 0.5772 0.5913 0.6118 0.5824 0.8092 0.8029 0.7131 0.7896 0.7293

10 0.5774 0.5896 0.3073 0.5817 0.8077 0.8021 0.7118 0.7888 0.7281

OD 0.5794 0.5794 0.5794 0.5794 0.7859 0.7859 0.7063 0.7859 0.7231

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Table 4.4.2 P f A 0 ) 1-1} versus u with variations of parameters.



*/4

0.3

fixed reduction g =-O.9

0.7

fixed reduction
a =0O.5

no reduction (g=0

0.5

0(- 2
£ 0.1

. A=0.1" =1

0.4 d 0.01

0.3

0.2

0.1
* S

* 6

*

I I I I I I I I I i U

0 1 2 3 4 5 6 7 8 9 10

Fig. 4.4.6 P {A0 >01-,i versus u for various reduction factors.



0.8

1 0.75

0.G

0.*5794

0.5

0.3.

.0.3

1 0.2

4

p0.

04 142 73 24 45 6 7 8 9 10
Fig. 4.7P JA >1-tl versus u for various maintenance-cycle times.



(3) VARATION OF FAILUf- RlATE PA iETSR (A)

The failure rate paramter A is assumed to change after each preventive

maintenance and it takes the form (other forms may be proposed)

A n  - D o- ( /- 1 1 )  e x p ( -1 -> , ' - , , . ( 4 .4 .4 )

The failure rate function r(t) with this maintenance-cycle dependent

failure rate paramter is plotted in Fig. 4.4.0 (for fixed reduction).

When A varies from to A we shall write

' t O~D

(as 0.05 t 0.1 in Table 4.4.2 Column (6)). The curves of P {A x.- t

versus u for A- 0.05, 0.1 and 0.05 t 0.1 are plotted in Fia. 4.4.9

(columns (5), (2), and (6) in Table 4.4.2). The larger the X , the

higher is the failure rate, hence it favors for more failure reduction, or

a shorter optimum operative-cycle time to have more 14-cycles. Thus

u is shorter for A = 0.1 than that for A= 0.05. For the maintenance

dependent A , as u is small, more 0-1.1 cyles will occur, and hence the

system is closer to that for A = A . As u -p cc , less number of

0-N4 cycles will take place and the system resembles the one with A.- 1 .

Asymptotically, the values P CD = 0.5794 and 0.7859 (from Table 3.3.1)

are achieved. The optimum u* differs greatly for the maintenance-

dependent A from the u* 's for constant A 's. This indicates that

if the failure rate parameter is not known exactly, the characteristics

of the system changes greatly when the A 's are actually maintenance-

dependent rather than constant.

ii
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(4) VIuWIA'Io; oE rF _PAIII RATE PARAYXTE1 (

FiZ. 4.4.10 shows the variation of the repair rate parameter

) - 1.0. 1.5, and 2.0 (columns (2), (7), and (8) in Table 4.4.2).

The optimum operative-cycle time u does not seem to change , probably

because the system failure rate is statistically independent of the

repair time TF  The smaller the p the longer the mean repair time,

hence the smaller the availability. Thus the probability curves in

Fie. 4.4.10 are lower for smaller i

(5) VAUIATION OF SYSTE DESIGN PARAMETER (E)

P -A 0 0.9J and P{A0 >,.85J versus u are plotted in Fig. 4.4.11

(columns (2) and (9) in Table 4.4.2). The smaller the E the larger

the Ac , hence the smaller the probability. If A is large, a long

optimum operative-cycle time u* has to be used. Hence u* is larger

when = 0.1 than when £ 0.15
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E,.P LL 4.4.3

The age replacement policy in 4.2 will be illustrated in this example

for the following cao

0- 2, E- 0.1, A- 0.1, p - 1, d - 0.01, g -.0.5 (fixed reduction)
t.

The values of PfA 7,1 ,- ~ (the age replacement time), and P f AZ,7, l- 1
versuc the operative-cycle time u are computed the PASCAL computer program.

The graph of P fAA n i-I versus tR for some values of u are plotted
t R

in FiEg. 4.4.12. Table 4.4.3 depicts the maximum P{A >
A R*' I

The age replacement policy is justified by comparing Fig. 4.4.2 and

Fig. 4.4.12.

Fixed reduction, g-0.5

at 2, E= 0.1, =0.1, u =1, d 0.01

maximum

0.5 0.5899 25.49 0.5904

1 O.G287 20.27 0.6287

2 0.3368 32.15 O.G368

5 O.GIG2 35.06 0.6162

10 0.5896 40.03 0.5896

Table 4.4.3 Some optimum age replacement timen.

I-
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The existence of an optimum age replacement time (Fig. 4.4.12 and

Table 4:4.3) may be explained by the following argument. Suppose the system

does not rail at the and of the Kt h O-H cycle. The probability of cyutcm
failure in the (1(+l) t h 0-M cycle is higher then in the previous 0-14 cycles

thbecause of aging. Hence to replace the system at the end of the K O-cycle

is more pi'eferable than to risk over the next O-M cycle. Thus we expect an

optimum t for smaller operative-cycle time u W hen u is large, then
system may fail during the first few 0-14 cycles. In this case, t* should
be chosen as the first time that the probability of the stochastic

availability achieves certain acceptance level. (see (4.2.14)).

NOTE

The time scale in the examples is not necessary the real time

unit. Interpretation is required. For example, we have

A =0.1 and u - 2

Then, ,Au* - 0.2
u = 0.2/;

= (0.2256)-

- (0.2256).(;.TBF)

For a real system with i.,"LF - 1000 hours, say, then the

optimum operative-cycle time in this case is

u = 225.6 hours.

Other parameters and times are interpreted similarly.

...............................................................
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CHAPTER 5

COST AND AVAILABILITY

S5.1 GEieRALIZED STOCAnSTiC AVAiLAILITY AND STOCHASTIC COST FUNCTION

The concept of maximizing the system availability can be interpreted as

minimizing a suitable system cost function and vice versa (Barlow and

Proschan (1965)).

Lot u  CD , and CF be respectively the operative, maintenance,

and repair costs per unit time. If TU and TD are some specified

uptime and maintdmance downtime, then the random variable

cUU U T + cDTF

is the total cost for a renewal cyclo. The fraction

C CUTU + CDTD + CFTF

Tu

is the (random) cost per unit operative time for a renewal cycle. Let

s CD/CU = relative maintenance cost with respect to operative

cost

cf a CF/CU = relative repair cost with respect to operative cost

4 Define the stochastic cost function as

TU + dT +cfTr
C(cc) a U (5.1.1)

df TU

Obviously,

A
C(I,1)

is a stochastic availability.
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It iz thoroforo reasonablo to define the gcnoroalizad ztochaztic availability

asociated with coats as
TU

A(cc) U (5.1.2)
TU + cdTD + cfTF

1 1 / C(cd,cf ) (5.1.3)

Note that ( ot< , 06<i)

I ) (5.1.4)
or,

P IC(cd~f 1' +31 - P iA(cduc )1~-j I 515d~c d'f +'

We may therefore define various types of generalized stochastic

availabiliti.es, or equivalently, stochastic cost functions as in ;3.1

and §4.2.:

(1) Generalized Stochastic Cycle Availability

(Stochastic Cycle Cost Function)

Ac (cd cf) - 1
Ccd,Cf)

T
d 'ea'e(5 If

T operative

operative + cd maintenance + f

where
Toperative = operative uptime for a renewal cycle

J Tmaintenance = maintenance downtime for a renewal cycle

>1 TF = repair time for a renewal cycle.



(2) Generalized Stochastic Avail ability for the nth 0-4 Cycle
th(Stochastic Cost Function for the n 0-R Cyclc)

A (CC
N ~ ~ So (c01cf CP~ ( C d C

n-i=-uj +0 Tui
jam..jul (5.17)

n-I n-I
u. + T + Cd(1l d + TcfTF

j.l In d cdn J

(3) Generalized Stochastic Availability for the n th 0-Cycle
th(Stochastic Cost Function for the n O-Cycle)

A o (Cdf) 1
n CO (cdC f )

n

n-l
= u + Tu u n

n 1 (5.1.8)n-i n-i

2: u. + Tuln + Cd 5- d +c fTF
jul jul fF

th

(4) Geneneralized Stochastic Availability for the n t -Cycle

(Stochastic Cost Function for the n M-Cycle)

Am. (cd,cf) -"
n C (cdc f )

nn

uj
= -J (5.1.9)

n-I
Euj + cd(Z d + ) + TF
jul j=l d



th
(5) Generalized Stockastic Availability at a Finite Time in the n 0-14 Cyclc

(Stochastic Cost Function at a Finite Time in the nth - Cycle)

Ant(cd,Cf) = 1
Ann(Cd

, c )

n-I

n-i A n-1 n-1< n

E u. + min(t,Tu I o)+ c d + cfTFj=1 -jul

S n (51.10)

Eu.

n n-I 
n

E uj + cd( (d. + min(tTdin))+ cfTFj-1 Jj.1

(6) Generalized Stochastic Availability for an Age Replacement Time

(Stochastic Cost Function for an Age Replacement Time)

tR 1
A (cd, cf) dt

CA1(cd,c f)

n-i
5Eu +'T

n-i n-i , TEft nl t n)

Su.j +T + c( d Tdin) n),2,...,Tul uln Cd( - d di f efF

11u.

K K-1
"uj + c d +cT

4 j~~. jul

Note that when cd - c f 1 , the above definitions reduce to those defined

in Chapter 3 and S4.2
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5.2 PROLMAIITY DISTuIUTONS OF GEErmALIZED STOCHASTIC AVAILAILIi-Y

The probability distributions of various generalizod r'tochaatic

availabilities or stochastic cost functions can be derived in thc zoac way
Sas in Chapter 3 and S 4.2 . We shall depict Fig. 5.2.1 and Fig. 5.2.2

as parallel to Fig. 3.2.1 and Fig. 3.2.2 respectively for the domains of

definitions of the corresponding variables, ans we shall summarize the

expressions in the following

o( 1<

U Tu f (z) dzn t tn
ri-i

Dn  - n fn(z) dz
-n

ti Cd Cd + /( - ) n -1

n (Cdof.o C f (z) P( - - 7- E ) .dz

f f jl

n- max (tn- Cd + /(l-) d

c + +(1-') ri-i n

a ltn f (Z.?) d d - E: d, J

l(cd'cf) t n(dccfI
',~ t c  rX max rai d tt )  'u

n-l n- /( -)-

L+11 n

n max in .. .. d d.



n-i n-i

f f .Ju--
TF -E(-)T < t._ .a _

To k c

n-l,n-1

jai

0. Tl

T
0 : T.I. .; - 4i,,; * cj].jd, 1 Zj

f.,o t,,, | , ..

a-,

-a t 14j

TJ..,

r
F+

,..e $Z 14 is 
'

5.52 Di + C

e jot

Fig. 5.2. Domai)fdfnto fTUnadT ihcss
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n n
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C;UPTER 6

CONCLUSIONS

A general repairable system model with a periodic maintenance schedule,

and age and maintenance dependent failure rate has been studied. This work

examines two special types of failure reduction, various concepts of

stochastic availabilities and their probability distributions, optimum

system design using stochastic availability, age replacement policy, failure

rate characteristics and parameter variations, computational aspects, as well

as senenerolized stochastic availabilities and stochastic cost functions.

For a periodic operative-maintenance schedule with failure reduction,

we have observed the existence of a unique optimum operative-cycle time u

(Fig. 4.4.2 and 4.4.6). An analytical proof of the existence and uniqueness

of u* is difficult (Eq.(3.2.18)). However, we have studied the asymptotic

behavior of the P f A >-i versus u curve 1§ 3.3 and Fig. 4.4.2). We

conclude that the curve with failure reduction is above the asymptotic value

P and hence above the curve wiUi no reduction. The reason is that the

lifetime probability density function with failure reduction is asymptotically

greater than the p.d.f. with no reduction (Eq.(2.5.16) ). Thus the

P f Ac >, 1- E crosses the P asymptotically from above. Hnce the

existence of an optimum. (not necessary unique) u is concluded. As a

further extension, the same problem with non-periodic operative-maintenance

policy may be studied to proVo the existence and possibly, uniqueness of a

cet of optimum operative-cycle times.

4 Some optimum system design criteria have been proposed and illustrated

by examples in Chapter 4 to obtain an optimum oprative-cycle time and an are

:1 replacement time. With an appropriate interpretation of the time and

parameter scales( as noted at the end of § 4.4 ), we can use the results and

curves in § 4.4 in system design to achieve an optimum schedule and to study

system characteristics against parameter variations. Since the analysis

involves complicated expressions, the PASCAL conputer program has found to

be useful in generating results as well as insights into the p'roblem.
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Some parameter variations of the repairable system have been explorod in

Example 4.4.2. For a real system the statistics of the failure rate are

usually unknown or can uc estimated approx-imately only. The sensitivity o17

optimum design depends on parameter variations. In particular, the optimum

operative-cycle time u* changes greatly for a maintenance-dependent failure

rate parameter A than constant A's. This affect is important in system
design because this case represents a system with a rapid varying failure rate

and it is therefore different from the constant failure rate parameter case.
Other parameter variations can be studied in a similar way. For example, the
repair rate u needs not be fixed, or the repair time may not be exponentially

distributed, or the repair time may depend on the degree of system failure.

As possible extensions and generalizations, the following topics are

proposed

(1) Other types of failure reduction criteria and nonlinear failure rates

(not necessarily of Weibull type) can be defined in a similar way.

(2) Nore general repair time distribution may be used. For repair time
dependo on system failure, the analysis involves the evaluation of double

integrals instead of single integrals. This can be done both theoret'.cally

and numerically.

(3) N'on-periodic operative-maintenance policy may be useful to obtain an

optimum set of operative-cycle times by probabilistic maximization of the

stochastic cycle availability when the system parameters change rapidly

with age and maintenance.

(4) Age replacement policy with non-periodic operative-maintenance schedule

4may be treated similarly.

(5) An appropriate interpretation of system costs will apply the use of

aeneralized stochastic availabilities or stochastic cost functions in

system design.

(6) The present PASCAL computer program can be modified to satisfy all the

above extensions and potential applications, because the program can be

implemented, with slight changes, in all computers with the standard

U.C.S.D. PASCAL language.



APPENITX I

V EI ULL DI STRI UTION

'ilie probability donsity function f(t) of a '010ibull distribution in

given by (1Weibull (1051))

where
A - scale parameter

ad - shape parameter

The shape of f(t) is sketched in Fig. Al.1.

WIhen U. 1, f(t) in an exponential p.d.f.

When f 2, t(t) is a Rayleigh p.d.f.

The distribution function F(t) of the Weibull distribution is given

by

¢t) - 3 f(t)dt
0

-1 - exp(-At) t >A0

A:1,4 
t

0

Fig. Al.1 '*eibull probability density functions.
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Th n th moment of a Weibuli distribution is aiven by

) _xxp(-X) dx

__.. ($ )(A1.3)A-

where .) is the gamma function (see e.g. Abramowitz and Stegun (1972)).
In particular, the mean value is given by when n -. 1,

uee r-(_ + i) (Al.4)
,ix o ean - (Al.5

of 2 a mean = O=.oSl A  (Al.6)
2A

The eibull reliability function R(t). is given by

R(t) = 1 - F(:t)

= exp(-4tt) , 0 (Al.7)

The laeibu .l failure rate r(t). is given by

r(t) = f(t) / n(t)

1= 0 1 , t o (Al.C)
0 t<O0

and the shapes of r(t) are sketched in Fig. Al.2.

Ij. . . ......



-:'/

r(t)

a- 2 (linear)

t= . (constant)

t
0

V-J. A1. 2 l'eibull failure rates.
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APPLI1WIX 2

P A S C A L C 0 .1 P U T E R PRO G RA ,!

The PASCAL computor program described in 4.3 to evaluate various

probability distributions of stochastic availabilities is listed below.

In the APPLE II PLUS micz-,computer system the program is called the

"SYSTE4.T1C.TEXT" file and is stored in a Wi- x Uz" floppy disk named the

'APPLEW: disk. To start the system, a disk named 1APPLE3:' is inserted

into the disk drive then followed by the 'APPLE0:' disk. One simply types

"R" to run the program. The program can be implemented in other computer

systems with minor modifications because the PASCAL system is the standard

U.C.S.D. PASCAL language.
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(.$ PROBABILITIES OF STOCHASTIC AVAILABILITY OF A REPAIRABLE *)
SYSTEM WITH AGE AND MAINTENANCE DEPENDENT

FAILURE RATES AND OPTIONAL AGE REPLACEMENT POLICY
APRIL 14, 1982

( Z$S+* )

USES TRANSCEND;

CONST CONV = 1.OE-7;
Si =" N 1;
S2 ='PtAC>1-E]";
S3 " EN(T)] ";
S4 ART ';
$5 =" PCAAR] ';
S6 W' PEAO ';
S7 =1 PEAM] ';
Se W. P[AN3 ";
$~9 =" PEN(T)=N]' ;

TYPEO ='<*E NO FAILURE REDUCTION **>';
TYPE1 ='<*l FIXED REDUCTION **>';
TYPE2 ='<** PROPORTIONAL REDUCTION **>';
PA =" PC SCA>';
TIME=' OPERATIVE-CYCLE TIME = 1;

VAR DNUNUDIDIUT1,T2,T3,T,TOUPOR,RTRRRFRUFO,
TUPTDOWNTUTTDTF,FUFDDTUPPROBPRDPRDRO G,
ENMUTMLTEEl ,EEDELTAFIXSCALEPARAMUPTART,
AOAMANPNAARMULAMDALAMAFLINFLZERO : REAL;
LUB, NALPHA, ALFA1, POINT, TERM, KIND, KL,

SELECTPRINTALL': INTEGER;
EXIT: BOOLEAN;
CHOICEPDATE : STRING;
FILER: INTERACTIVE;

PROCEDURE OUTPUTCONTROL;
BEGIN

WRITELN('OUTPUT MEDIUM :');
WRITELN(' 1 = CONSOLE');
WRITELN(' 2 = PRINTER');
WRITE('WHICH NUMBER? '); READLN(SELECT);
CASE SELECT OF

1lt: CHOICE*='CONSOLE:';
2: CHOICE:='PRINTER:';
END;

IF (SELECT=2) THEN
BEGIN

WRITE(' PRINT ALL ? (YES=l, NO=0) );READLN(PRINTALL)
END;

END; * OUTPUT CONTROL *)

FUNCTION POWER(X: REAL; Y: INTEGER): REAL;
VAR Z: REAL;
BEGIN

Z:=I.0;



WHILE Y'.-O DU JA

4 BEGIN
WHILE NOT ODD( Y DOa

BEGIN
Y:-Y DIV 2;
x:=X*x

END;
Y:=Y-i;
Z:=x*z

END;
POWER*4=Z

END; (* INTEGRAL POWER *

FUNCTION MAX(A: REAL; B: REAL): REAL;
BEGIN

MAX:4=O.,5*(A+B+ABS( A+B))
END; (* MAXIMUM *)

FUNCTION MIN(A: REAL; B: REAL): REAL;
BEGIN

MIN:=0.5*(A+B-ABS( A-B))
END; (* MINIMUM *)

FUNCTION EXPF(T: REAL):# REAL;
VAR X: REAL;
BEG IN

IF(T<-60.O.PTHEN X:'=0O-
ELSE X:=EXP(T);

EXPF:O=X
END; (* EXPONENTIAL FUNCTION WITH UNDERFLOW SUPPRESSION *

FUNCTION REPAIR(T: REAL): REAL;
BEGIN

REPAIR:O=1.O-EXPF( -MU*T)
END; (* EXPONENTIAL REPAIR TIME CDF *

PROCEDURE IJISTRIBUTION( TvTOYRRPDELO' REAL;VAR RPRFPF: REAL);
BEGIN-D 

L AR :=PARAM*PCwER(TYALFAl)-DLA
RF:,=EXPF(-LAMAF*( POWER( TIALPHA )-POWER( TOALPHA ))+DIELTA*( T-TO) )
F :=R*RF*RR

END; (* AGE & MAINTENANCE DEPENDENT WEIBULL FAILURE RATE *

PROCEDURE SIMPSON( TlpIlPT2FI3pRRPDELTAPEEPTTUJTTDIHUPHD* REAL;
NPUPNPD*: INTEGER; VAR IUYID: REAL);

VAR SUOSUI.,SU2vSU4,SfOSDlSD2oSD4,PDFSF,
XPYPUlPU2vDlvD2: REAL;
JqNUlpND1** INTEGER;

BEGIN
IUIaO;OP
IF HU>ObO THEN
BEGIN

Ul :f=MAXQ*.,EE*Il-TTD;i
DISTRIBUTION( 11,TlRRSDELTAPRSFPPDF);



ItJ

U'- :=EE*T2-'TrD;
D)ISTRIBUTION(T2,'TlRRDELTARSFPDF);
SW. :=PDF*REPAIR( U2);
SU2 : =o *0;

su440=000;
NW. :=NPU-1;
FOR J:=j TO NUl DO

IF ODD(J) THEN
BEGIN

X :*=Ii+J*HU;
Y :=EE*X-TTD;
DISTRIBUTION( XTlRRPDELTAPRSFPPDF);
SU4:=SU4+PDF*REPAIR( Y)

END
ELSE

BEGIN
x tl=II+J*HU;
y **=EE*X-TTD;
DISTRIBUTIoN(XTlRRDELTAPRPSF,-PDF);
SU2:=SU2+PDF*REPAIR( Y

END;
IU:=HU*( SW.+SUO+2.0O*SU2+4.0*SU4 )/3,O;

END;

IF HD>0.0 THEN
BEGIN

DI :*=-T2+TTU;
DISTRIBUTION( T2,TlRRDELTAIRIFSF.PPDF);
SDO:O=PDF*REPAIR( Di);
D2 :*=-I3+TTU;
DISTRIBUTION( 13,Ti RRDELTARSFPDF);
SD1,1,:=PDF*REPAIR( D2);
SD2:000;
SD4:"=0.O;
ND1 :=NPD-i;
FOR J:4=1 TO NDi DO

IF ODD(J) THEN
BEGIN

X :*=T2+J*HD;
Y *=-X+TTU;
DIsTRIBUTION(XTlpRRPDELTAPRYSFPDF);
SD4*:=SD4+PDF*REPAIR( Y)

END
ELSE

BEGIN
X :*=T2+J*HD;
Y :=-X+TTU;
DISTRIBUTION(XTlPRRYDELTAFRSFPDF);
SD2:=SD2+PDF*REPAIR( Y)

END;
ID:O=HD*( SDi+SDO+2.0*SD2+4.0*SD4)/3*0O;

END;
END; (* SIMIPSON'S RULE Z

PROCEDURE INTEGRATION( Ti T2u T3vRRpDELTA: REAL;
VAR UPTPIUPID: REAL);y

VAR HDYHUPIlPI3vTTUYTTDPUTT* REAL;
NPPNPUPNPD:' INTEGER;
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NPU:=2*ROUND( POINT/2);
NPD:=2*ROUNDC POIN'r/4);
Ii. :=MIN( T2,Ti+MAX( oo,-TUT+TDT/EE));
UTT : TUT+T2-T 1;
13 :=MAX( O.OuIIN( T3,T2+EE*UTT-TDT));
TTU:=UTT/Ei;
TTD:STDT/El;
HU :=MAX(o*o,(T2-Ii)/NPU);
HD :aI'AX( O*OP(I3-T2 )/NPD);
SIMPSON(TiIlT2,13,RRDELTAvEETTUPTTDPHUvHDPNPUNPDPIUvID);
UPT:-UTT;
IU :=MAX(o*oIU);
ID *'=MAX(O.,,0ID)

END; (* INTEGRATION *

PROCEDURE WEIBULL(Ti:6 REAL; VAR RO: REAL);
BEGIN

LAMDA:=LINF-( LINF-LZERO )*EXP( -(N-i )/SCALE);
ALFAl :=ALPHA-i;'
LAMAF:*=POJER( LAMDAvALPHA);
PARAM*:=ALPHA*LAMAF;
RO :=PARAM*POWER Ti ,ALFAI)

END;p * WEIBULL PARAMETER K

PROCEDURE PROBABILITY;
BEGIN

PR :=PROB;
DISTRIBUTION( T2,TlRRPDELTAPRRUvFu);
DISTRIBUTION( T3,TiRRDELTAPRTPRDPFD);
UN :=MAX( O*OrRR*(1*0G-RU));
tIN :=MAXC O.ORR*( RU-RD));
Uri :=DN+UN;
PN :=PN-UD;
FO :=FO+UN;
INTEGRATION(Tl1,T2,T3tRRVDELTAPUPTIIUID);
IF (UD>O.O) THEN
BEGIN

AO :=IU/UD;
AM :=ID/UD;
AN :'=UN*AO+DN*AM; 1
PROB :=PROB+AN;

4AN :=AN/UN
END;

ART :.UPT+TDT;
AAR :=PR+IU+PN*REPAIR( UPT/El-ART);
EN #=EN+N*UD;
IF (PRINTALL=i) AND (SELECT=2) THEN
WRITELN( FILERN:3,PRoB*01o:6PEN:07:2pART*#a:3,

AAR:0966AO*#1o:6PAM**1o:7pAN:io:7vuD*0i2);
WRITELN( N:03PROB:1io:6vEN97:02PART:08:3PAAR:'9:6p

TERM =Nv
TUT :=TUT+T2-Ti;
TDT :=TDT+T3-T2;
RR :=RR*RD;
Ti *=T3;
T2 :=Ti+TUP;
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WEIIBULL( T1,RO);
IF (KIND=l) THEN

DELTA :=-MAX O0,RO-RT+FIX);
IF (KIND-2) THEN

DELTA :#=MAX(osoRo-(1,o-G)*RT);
DP :=ABs(PROD-PR);
IF (DP<CONV) AND (PRGB(1.0) AND (N>l) THEN EXIT:=TRUE

END; (* TOTAL PROBABILITY $

PROCEDURE INPUT;
BEGIN

WRITELN;
WRITE('***K* DATE :' );READLN( DATE);
WRITE(' E = ');READLN(E);v
WRITE(' ALPHA = / );READLN( ALPHA);
WRITE('LAMDA INITIAL = ');PREADLN(LZERO);
WRITE('LAMDA FINAL = ')p*READLN(LINF);
SCALE :=1o.O;
WRITE( , MU = ' );READLN( MU);
WRITE('MAINTENANCE-CYCLE TIME = ');READLN(TDOlJN);
WRITELN('CRITERION OF FAILURE REDUCTION : '

WRITELN(' TYPE 0 = NO FAILURE'REDUCTION ');
WaRITELN(' TYPE 1 = FIXED REDUCTION /)
WRITELN(' TYPE 2 = PROPORTIONAL REDUCTION ')
WRITE(' TYPE = / );READLN(KIND);
IF (KIND=O) THEN G:1=O00
ELSE

BEGIN
WRITE(' REDUCTION FACTOR = / );READLN(G);
END;

WRITE(' INITIAL 0-CYCLE TIME = );READLN(UPO);
WRITE('O-CYCLE TIME INCREMENT = ');READLN(DTUP);
WRITE('NUMBER OF 0-CYCLE TIME = );READLN(L);
WRITE(' SUMMATION TERMS = - );READLN(LUB);
WRITE('INTEGRATIO4 POINTS = ' );READLN(POINT)

END; (* INPUT DATA *

PROCEDURE DATA;
BEGIN

INPUT;
LAMIA0=LZERO'

:1El :=1,.-E;
EE :=E/El1
REWRITE( FILER,CHOICE);
WRITELN( FILER);
WR.XTEL.NFILER,'DATE :'pDATE);WRITELN(FI.ER);
WRITELN(FILERv ** STOCHASTIC AVAILABILITY *)
IF (KIAND=O) THEN WRITELN(FILERPTYPEO)

ELSE
BEGIN

IF (KIND=1) THEN WRITELNFILERPTYPE1;^
IF (KIND=2) THEN WRITELN(FILERPTYPE2);
WRITELM(FILERY' REDUCTION FACTOR = 'G:7:05)

LiRITEr.JPI FILER,' E = 'E52p
URITELr4(FILER,' APLHA = ',ALPHA:02);
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WRITELN(FILERY'LAMDA INITIAL = ILzERO**7:4);
WRITELN(FILERY'LAMDA FINAL = 'PLINF:7*04)

WRIYE1 - (FILERP' MU = 'PMU:7:4);
URJCI..N FILERY' MAINTENANCE-CYCLE TIME = ' YTDOWN:7 *to
WF:HiELN(FILER,' INTEGRATION = 'PPOINT,' POINTS')

ENII; % PRINT DATA 4)

PROCEDJI'E HEADING;
BEGIN

IF (PRINTALL=i, AdD (SELECT=2) THEN
BEGIN

WRITELN( FILER);
WRITELN( FILERPTIMEPTUP:98:5);
WRITELN(FILERYSIS2uS3.S4,S5,S6,S7,S8uS9)

END;
WRITELN( );
WRITELN(' ,* .. ' YTIMEPTUP:*5;
(WRITELN( Si S2,S3vS4pS~vS6vS73 S8vS9);
WRITELN(

END; (* PRINT HEADING *

PROCEDURE INITIAL;
BEGIN

EXIT *=FALSE;
ALFA. :=ALPHA-i;
LAMAF:=POWER( LZEROPALPHA);
PARAM*:=ALPHA*LAMAF;
FIX :=G*PARAM*(TUP+TDOWN);
DEL TA =0 00
N :I
PROD :=oo;
PN #=io
RR :=.t*o;
FO :=oo;
TDT :=o*o;
TUT :=oo;
EN 0:=o*o;
Ti :=o.o;
T2 :=TUP;
T3 :=T2+TDOWN.4 END; *INITIAL CONDITIONS *

* I BEGIN (** MAIN PROGRAM*)
OUTPUTCONTROL;
DATA?'
TUP :=UPO;
FOR K69- TO L DO

BEGIN
INITIAL;

* HEADING$
REPEAT PROBABILITY UNTIL (N>LUB) OR EXIT;
IF N>LUB THEN
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WRITELN( FILER);
WRITELN( FILERP'** SCA NOT CONVERGE IN " YLLiBP f ERMS *)

WRITELN(FILERvPAYE1:4:*2Y' 3 = 'PPROB**9:6,'p 'YTIMEvTUP)
END

ELSE
BEGIN
iUT:=TUP*(EN-O.5);
MLT:-( TUP+TDOWN )*( EN-0.5);
WRITELN( FILER);WRITELN( FILERPTIMETUP8:5);*
WRITELN(FILERPAE:42v,' 3 = -'PPROB9:6'v C'vTERi1P'J')v
WRITELN(FILERt'MEAN O-M CYCLES = YE)
bJRITELN(FILERP' MEAN UPTIME = JMUT)
WRITELN(FILERP' MEAN LIFETIME = ',MLT)

END;
TUP :=TUP+DTUP

END;
URITELNo ;WRITELN('s***zI*z***** END ***cK*****')

CLOSE( FILER)
END. (ESTOCHAIS&TIC AVAILABILITY )

A *
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